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Antennas. Introductory Comments

Classification of antennas by size:
Let / be the antenna dimension:

1. electrically small, ¢/ <<I : primarily used at low frequencies where the wavelength
islong
2. resonant antennas, / » | /2. most efficient; examples are dlots, dipoles, patches
3. electrically large, ¢ >>1 : can be composed of many individual resonant
antennas; good for radar applications (high gain, narrow beam, low sidelobes)

Classification of antennas by type:
1. reflectors
2. lenses
3. arrays

Other designations. wire antennas, aperture antennas, broadband antennas
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Radiation Integrals (1)

Consider a perfect electric conductor (PEC) with an e ectric surface current flowing on S,
In the case where the conductor is part of an antenna (a dipole), the current may be caused
by an applied voltage, or by an incident field from another source (areflector). The
observation point is denoted by P and is given in terms of unprimed coordinate variables.
Quantities associated with source points are designated by primes. We can use any
coordinate system that is convenient for the particular problem at hand.

OBSERVATION
POINT

P(x,y,z)or P(r,q.,f)

R=|R=/(x- x§?+(y- y§?+ (z- 20

/ y
jS(XQI y¢z9

PEC WITH
SURFACE CURRENT
The medium is almost always free space (1n,,€,), but we continue to use (1r,e) to cover

more general problems. If the currents are known, then the field due to the currents can be
determined by integration over the surface.
2
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Radiation Integrals (2)

The vector wave equation for the electric field can be obtained by taking the curl of
Maxwell’ s first equation:
N° N” E=K°E- jwnd,
A solution for E in terms of the magnetic vector potential A(F) is given by
NN - A(r
[-An) o
jwne

J

where (F) isashorthand notation for (x,y,2) and A(F) = % @DESe' KRdse

E(F) =- jwA(r) +

We are particularly interested in the AZ
case were the observation point isin the
far zone of theantenna(P® ¥ ). AsP

recedes to infinity, the vectors i and R
become parallel. Fe f

OBSERVATION
POINT
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Radiation Integrals (3)

Distance Learning

In the expression for A(I") we use the approximation 1/ R » 1/r in the denominator and
F-R»F. [r’ - f(rc f)] in the exponent. Equation (2) becomes

A(r) » L (‘I‘)js e kP [f' I’;(rq; I:\)]ds(]): Le" jkr c\[\)jS ejk(fq: I’r\)ds(]:
4pr g 4pr S
When thisisinserted into equation (1), the del operations on the second term lead to 1/ r?

and 1/r 3 terms, which can be neglected in comparison to the - jwA term, which depends
only on 1/r. Therefore, in the far field,

E(r) » %e‘ Ik s k(¢ Fgse (discard the E, component) (3)
r
S
Explicitly removing the r component gives,
E(F) » - JKh e K Je - f(js : f)]ejk(m st

pr 9

The radial component of current does not contribute to the field in the far zone.
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Radiation Integrals (4)

e Jkr

Notice that the fields have a spherical wave behavior in the far zone: |E| ~ . The

r

spherical components of the field can be found by the appropriate dot products with E.
More general forms of the radiation integrals that include magnetic surface currents (J )

are:
s -, TSI o) B
Eq(r,q,f)= 4;)krh e Jkr(‘]‘ﬁJs-q +Jm; fuejkmdsd:
s € u
Er (r,q.f)=- Ik e @Sﬁs-f- Jms'qgejkmdsd:
dpr S 6 h

The radiation integrals apply to an unbounded medium. For antenna problems
the following process is used:

1. find the current on the antenna surface, S,
2.remove the antenna materials and assume that the currents are suspended

In the unbounded medium, and
3. apply the radiation integrals.
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Hertzian Dipole (1)

Perhaps the simplest application of the radiation integral is the calculation of the fields of
an infinitessimally short dipole (also called a Hertzian dipole). Note that the criterion for

short means much less than a wavelength, which is not necessarily physically short.

Z A

- For athin dipole (radius, a <<1 ) the

surface current distribution is independent
of f . The current crossing aring around

the antennaiis | =|J|2pa
——
A/m

- For athin short dipole (¢ <<1 ) we assume

that the current is constant and flows along
the center of the wire; it isafilament of
zero diameter. The two-dimensional
integral over Sbecomes a one-dimensional
integral over the length,

BJ Ast® 2pagl di¢
S L
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Hertzian Dipole (2)

Using r(=2zCand = Xsnq cosf + ysngsnf + Zcosq givesr(. i =z(cosq. The
radiation integral for the electric field becomes

: ¢
- jkh o ik N ejk(TG:f)deq;—&e ke Oelkz"bosq dz¢

Apr 0 die 4pr 0

However, because / isvery short, kz(® 0 and e/®°H ,, 1. Therefore,

E(r,q,f ) »

Lt -1 5 .
E(r,q,f)»- Jlll;r;l Z ) kr(‘)(l)dzdi:we' ke

; 4pr
leading to the spherical field components Z 5
Eq :qA- E »- Jkhizg Ze' I
4pr ¢
_ iknising e E
R f‘,pr x/ y
Ef =f .E=0
SHORT CURRENT

FILAMENT
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Hertzian Dipole (3)

Note that the electric field has only a 1/r dependence. The absence of higher order terms
IS due to the fact that the dipoleisinfinitesimal, and therefore r ® 0. Thefieldisa

spherical wave and hence the TEM relationship can be used to find the magnetic field
intensity
k™ E _ F" EqQ _f jkl/snq o Ik

h h dpr

The time-averaged Poynting vector is

H =

1 s, —x]l 1. 1. _hkI°r?sin?g |
W, ==AIE" H [==A\E,H; [ = r
U { } 2 {Eq f } 320 2,2
The power flow is outward from the source, as expected for a spherical wave. The
average power flowing through the surface of a sphere of radiusr surrounding the source

IS
Pa = (‘)(‘)Na\,-ﬁds:—‘ ‘2 > c‘)(‘;sinzqf-r‘rzsinq dgdf = ! W
00 3207° 50 12p

=8p /3
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Solid Angles and Steradians

Planeangles. s = Rq, if s=Rthen q =1radian

ARC LENGTH

R S

Solidangles W= A/ R, if A=R? then W =1 steradian

SURFACE
AREA

A
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Directivity and Gain (1)

The radiation intensity is defined as
dP R _,
U(q.f) :—d\rf\d =17 Wy, =r\W,|

and has units of Watts/steradian (W/sr). The directivity function or directive gain is
defined as

D(q.f) =

power radicted per unit solid angle  _ ARy /W _ 2 |

average power radiated per unit solid angle B4 /(4p) P

For the Hertzian dipole,
rzhkzﬂffzdnzq‘

2\K 2,2
r“Wa, 32p °r ‘ 3. 5
D(.f)=4 ——=4p =_-sn°q
P hk2[1[? 2 2
12p
The directivity is the maximum value of the directive gain

3
Dy = Dmax @.f ) = D(@pnax »f max)za

10
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Dipole Polar Radiation Plots

Half of the radiation pattern of the dipoleis plotted below for afixed value of f . The half-

power beamwidth (HPBW) is the angular width between the half power points (1/+v2
below the maximum on the voltage plot, or —3dB below the maximum on the decibel plot).

FIELD (VOLTAGE) PLOT DECIBEL PLOT

0 15 9010

18

330

240 300
270 270

The half power beamwidth of the Hertzian dipole, gg:

‘Enorm""gnq‘ b Sin(CIHP):O-707 b qHP:450 b CIBZZCIHP:QOO

11
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Dipole Radiation Pattern

Radiation pattern of a Hertzian dipole aligned with the zaxis. Dy, isthe normalized
directivity. Thedirectivity valueis proportional to the distance from the center.

L AT A TN
‘E‘:ﬂ::"ﬂ‘ A
AR

Dn*sinithetal™cos{phi) Din*sin{theta)*siniphi)
12



Naval Postgraduate School Antennas & Propagation Distance Learning

Directivity and Gain (2)

Another formulafor directivegainis
" 2
D(@.f ) :%\Emrm @)

where W 5 isthe beam solid angle

p
O
0

—>

2 .
Enorm (0, f )‘ sinqg dq df

2p
WA: é
0

and ‘Enorm (q,f )‘ IS the normalized magnitude of the electric field pattern (i.e., the
normalized radiation pattern)

_ |E(ra.f)
‘Emax (r’q’f )‘

Note that both the numerator and denominator have the same 1/r dependence, and hence
the ratio isindependent of r. This approach is often more convenient because most of our
calculations will be conducted directly with the electric field. Normalization removes all
of the cumbersome constants.

‘Enorm @.f )‘

13
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Directivity and Gain (3)

As an illustration, we re-compute the directivity of a Hertzian dipole. Noting that the
maximum magnitude of the electric field isoccurswhen q =p /2, the normalized electric
field intensity is smply

‘Enorm(q f )‘ =|sinq|

The beam solid angleis

2L 2 .
WA= 00 |Enorm(@.f )‘ sng dq df
00
P i3 8
=Zp cpn°qdq =—
0 3
=4/3
and from the definition of directivity,
_4 = 2_ A 1inmi2 — 3542
D(qi)—WA\Enorm(q,f ) -%\an\ =2sing

which agrees with the previous result.

14
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Example

Find the directivity of an antenna whose far-electric field is given by

l 10e” ¥

cosq, 0" £q£90°
Eq(r.a.f)=

jkl‘

1
} cosq, 90° £q £180°
"

The maximum electric field occurswhen cosg =1 ® ‘Emax‘ =10/r. Thenormalized
electric field intensity is

‘EQnorm (q’f )‘ TO 1‘

which gives a beam solid angle of

2pp/2 2p p 2p
A= O Ocos’qsingdgdf +0.01¢ ¢ cos’qsingdgdf == (11)
0 0 0p/2

and adirectivity of D, =5.45=7.37 dB.

0° £q £90°
90° £q £180°

15
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Beam Solid Angle and Radiated Power

In the far field the radiated power is

=
OO/‘B)

P g 1
MIE" H rds=— ¢
HIE W 1= 00

L2 "
E|/h °F

E‘ résnqdgdf b Fy =2hPyg

OO/'IC\S)

Fad =5

J

From the definition of beam solid angle

PP 2
Wa = 00 |Enorm(d,f )‘ snq dq df
00
1 PP 2, = |2
X 00|E/‘r?snqdgdf = P Frad:WA‘EmaX‘ r
‘ Emax| T 0 0
° Frad
Equate the expressions for Fy
= 2 2
WAEmax r
Prad = ‘ ‘

Zh

16
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Gain vs. Directivity (1)

Directivity is defined with respect to the radiated power, Pg. This could be less than the
power into the antenna if the antenna haslosses. The gain isreferenced to the power into

the antenna, R, .
ANTENNA

Define the following:

RPnc = power incident on the antenna terminals
Per = power reflected at the antenna input
RPn = power into the antenna

Ross = power loss in the antenna (dissipated in resistor Ry, Ross = %\I ‘ZRg)
Rt = power radiated (delivered to resistor Ry, P = 51|°Ra, Ryisthe radiation
resistance)
The antenna efficiency, e, is Pog = €P, where0£ e£ 1.

17
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Gain vs. Directivity (2)

Gain isdefined as
G(q,f)

_ BPrag /M _ Py /A

R, /(4p) Pale o)

Most often the use of the term gain refers to the maximum value of G(q,f ).

Example: The antenna input resistance is 50 ohms, of which 40 ohmsis radiation
resistance and 10 ohmsisohmic loss. Theinput current is0.1 A and the directivity of the
antennais 2.

Theinput power is Ry =2[1|°Rin = 5[0.1°(50) =0.25 W
The power dissipated in the antennais Ross = %\I \2 R = %\0.12(10) =0.05 W
The power radiated into spaceis Py = %\I \ZRa = %\O.]f(40) =02 W
aHad Oy - ae0.2

If the directivity is D, = 2 then the gain is G = eD = D =F*“ 016
Y15 J Ch o0 802552

18
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Azimuth/Elevation Coordinate System

Radars frequently use the azimuth/elevation coordinate system: (AzEl) or (a,qg) or

(ge,f a). The antennaislocated at the origin of the coordinate system; the earth's surface
liesin the x-y plane. Azimuth is generally measured clockwise from areference (like a
compass) but the spherical system azimuth angle f is measured counterclockwise from the

x axis. Thereforea =360- f and g =90 - q degrees.
ZENITH

o |

CONSTANT
ELEVATION

HORIZON

19
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Approximate Directivity Formula (1)

Assume the antenna radiation pattern is a “pencil beam” on the horizon. The patternis

constant inside of the elevation and azimuth half power beamwidths (ge,f 5) respectively:
v

q=0

]

20
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Approximate Directivity Formula (2)

Approximate antenna pattern

1 ko
Eoe q, (/2-qe/2)EqE(p/2+qe/2)and-fo/2Ef £f4/2
10 ese

The beam solid angleis

E@.,f)=

p.de fa
2 2 2 _
Wa= 0 @qudf
P de _fa »l
2 2 2

=f a[sin(ge/2)- sin(- ge/2)]
»fa[qe/Z (qe/z)]:faCIe

Thisleads to an approximation for the directivity of Dg = \;‘Vp 4:? Note that the
A (el a

anglesareinradians. Thisformulais often used to estimate the directivity of an omni-
directional antenna with negligible sidelobes.

21
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Thin Wire Antennas (1)

Thin wire antennas satisfy the condition a << . If the length of the wire (¢) is an integer
multiple of a half wavelength, we can make an “educated guess’ at the current based on
an open circuited two-wire transmission line

FEED POINTS A

—p <—| /4 /2

oD
For other multiples of a half wavelength the current distribution has the following features
FEED POINT

LOCATED AT
/\ />( MAXIMUM
r=1172 \\/ ™

CURRENT GOES

/\ TO ZERO AT END
| —
\/ (=3l /2\\/

22
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Thin Wire Antennas (2)

Distance Learning

On a half-wave dipole the current can be approximated by
| (z) =1,cos(kz) for-1| /4<z<l| /4

Using this current in the radiation integral

T |
E(ra.f)="32"e Mz §, cos(kz e/ @®o gz¢
apr 1 /4
- jkhly ke, izt
=——9¢ M2 cpogkz el Hdze
Apr 114
From atable of integrals we find that
=0 =+1
™Y Acos(Bz9 + B Sn(Bz9]
(ros(Bz9 e"2%z¢= >
A-+B

where A = jkcosq and B =k, so that A% +B? =- kzcoszq +Kk? :kzsinzq. Theq

component requires the dot product 2. g =- sng.

23
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Thin Wire Antennas (3)

Evaluating the limits gives

2CO%COSC|Q
~ ap o)
. COSAE- cOosq -
Eq _ jkhloe_ jkrSl [eijOSQ/Z (- e J'OCOSQ/Z] _ Jhl, 0 o ik 2 )
pr Zsn2g 2pr sng

The magnetic field intensity in the far field is

P 0
~ L . COSC—COS( -
K E_¢E _Jlogin €2 qraf“

h He  2pr sng

The directivity is computed from the beam solid angle, which requires the normalized

electric field intensity
2

IEq|? cos(IO cosq
Eamad” | SN

‘Enorm‘ —

24
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Thin Wire Antennas (4)

P P

2 2
~ COS“(pcosqg/2) . ~ COS“(p cosqg /2
Wy =2p 0] (p g )smq dg =2p 0) (p g )dq =(2p)(1.218)
smzq 0 smzq

Integrate numericall y
Thedirectiveganis

2(p 2P
_ 4p COS |\ COsq COS |\ COsq
=P ‘Enorm(q f )‘2 = (22 ): 1.64 (22 )
Wa (2p)(1.218)  dn“q sn“q

The radiated power is
2
_WalEg [ T2 2p 2180712
2h 2h (2pr)?

where R, isthe radiation resistance of the dipole. The radiated power can be viewed as

the power delivered to resistor that represents “free space.” For the half-wave dipole the
radiation resistanceis

I:>rad

=36.57|1,|° %UOFR&

R, = zp—fag =(2)(36.57) = 73.13 chms
o
25
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Numerical Integration (1)

The rectangular rule isasimple way of evaluating an integral numerically. The areaunder
the curve of f(Xx) isapproximated by a sum of rectangular areas of width D and height

f(x,), where x, = % +(n- 1) + a isthe center of the interval nthinterval. Therefore, if
all of the rectangles are of equal width

b b
of (X)dx » D] f (x,)
a a

Clearly the approximation can be made as close to the exact value as desired by reducing
the width of the triangles as necessary. However, to keep computation time to a minimum,
only the smallest number of rectangles that provides a converged solution should be used.

A

e
/ N4
N

fF(x)

1
D ~

d
hl

A 2o

»

. -
X, X X

26
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Example: Matlab programsto integrate

"\ cos? (p cosq /2)
ang

0

Sample Matlab code for the rectangular rule

% integrate dipole pattern using the rectangular rule

cl ear

rad=pi / 180;

% avoid 0 by changing the Iimts slightly

a=. 001; b=pi-.001;

N=5

delta=(b-a)/N;

sun¥o0;

for n=1: N
t heta=del ta/ 2+(n-1) *del t a;
sumrsumtcos( pi *cos(theta)/ 2)"2/sin(theta);

end

| =suntdel ta

dq

Convergence: N=5, 1.2175; N=10, 1.2187; N=50, 1.2188. Sample Matlab code using the
guad8 function

%integrate to find half wave dipole solid angle
cl ear

| =quad8(' ci nt', 0.0001, pi -. 0001, .00001);
disp(['cint integral, I: ', nunmstr(1)])

function P=cint(T)
% function to be integrated
P=(cos(pi*cos(T)/2).72)./sin(T);

27
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Thin Wires of Arbitrary Length

For athin-wire antenna of length ¢ along the z axis, the electric field intensity is
: gco el Cosq 9 cosgl’(—g Ql?'
2pr sng .

é
€

Example: 7 =15 (left: voltage plot; right: decibel plot)

90 2

270

28
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Feeding and Tuning Wire Antennas (1)

When an antenna terminates a transmission line, as shown below, the antenna impedance
(Z3) should be matched to the transmission line impedance (Z) to maximize the power
delivered to the antenna

=Za-Z0 gy vowr =29
Za+Zo 1- g

The antenna s input impedance is generally acomplex quantity, Z; = (Ry + R/ ) + jXa.
The approach for matching the antenna and increasing its efficiency is

1. minimizethe onmicloss, R, ® 0O

2. “tune out” the reactance by adjusting the antenna geometry or adding lumped
elements, X5 ® 0 (resonance occurswhen Z, isreal)

3. match the radiation resistance to the characteristic impedance of the line by
adjusting the antenna parameters or using atransformer section, Ry ® Z,

29
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Feeding and Tuning Wire Antennas (2)

Example: A half-wave dipoleisfed by a50 ohm line

G=%a %o _ 73-90_ 0.1870
Za+Zo, T73+50

1+\G\
—— =146
1- 19

The loss due to reflection at the antennaterminalsis

VSWR =

t[*=1- |G* = 0.965
10log(t [?)= - 0.155 dB

which is stated as “0.155 dB of reflection loss’ (the negative sign isimplied by using the
word “loss’).

30
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Feeding and Tuning Wire Antennas (3)

The antenna impedance is affected by

1. length

2. thickness

3. shape

4. feed point (location and method of feeding)

5. end loading
Although all of these parameters affect both the real and imaginary parts of Z,, they are
generally used to remove the reactive part. The remaining real part can be matched using
atransformer section.

Another problem is encountered when matching a balanced radiating structure like a
dipole to an unbalanced transmission line structure like a coax.

UNBALANCED FEED BALANCED FEED .
A
COAX TWO-WIRE LINE
A () +
Ve % \J 12 Vg_O /2

DIPOLE DIPOLE

31
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Feeding and Tuning Wire Antennas (4)

If the two structures are not balanced, areturn current can flow on the outside of the
coaxial cable. These currents will radiate and modify the pattern of the antenna. The
unbalanced currents can be eliminated using a balun (balanced-to-unbalanced transformer)

UNBALANCED FEED BALANCED FEED
I (z
a b a b
C) Va ! Vp Va =Vp
ap,

Baluns frequently incorporate chokes, which are circuits designed to “choke off” current
by presenting an open circuit to current waves.

32
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Feeding and Tuning Wire Antennas (5)

An example of abaun employing a choke is the sleeve or bazooka balun

«— |» Su——
J HIGH IMPEDANCE (OPEN CIRCUIT)
] [ PREVENTS CURRENT FROM FLOWING
ON OUTSIDE
| /14 Z@T
o] |11
i SHORT CIRCUIT
Zo

The choke prevents current from flowing on the exterior of the coax. All current is
confined to the inside of surfaces of the coax, and therefore the current flow in the two
directionsis equal (balanced) and does not radiate. The integrity of a short circuit is easier
to control than that of an open circuit, thus short circuits are used whenever possible.
Originally balun referred exclusively to these types of wire feeding circuits, but the term
has evolved to refer to any feed point matching circuit.

33
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Calculation of Antenna lmpedance (1)

The antenna impedance must be matched to that of the feed line. The impedance of an
antenna can be measured or computed. Usually measurements are more time consuming
(and therefore expensive) relative to computer ssmulations. However, for asimulation to
accurately include the effect of all of the antenna’ s geometrical and electrical parameters
on Z,, afairly complicated analytical model must be used. The resulting equations must
be solved numerically in most cases.

One popular technique is the method of moments (MM) solution of an integral equation
(IE) for the current.

2 4 1. 1 (z9Q isthe unknown current distribution on the

D 112 wire
2. Find the z component of the electric field in
—> |+ 2a terms of | (z) from the radiation integral
+ b/ 2 3. Apply the boundary condition
E \J}J
Vg! 9 v b2 e —a)=]0 bI2E|ZE 012
2\l “V=LE,, b/23 |7

U in order to obtain an integral equation for | (z(

34
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Calculation of Antenna Impedance (2)

One specia form of the integral equation for thin wires is Pocklington’s equation

5 (12 - jkR .
&, 207 &M 40 b/2E|ZE(/2
gk +'ﬂzzé_ O!(z9 4R dz¢—%_ jweEy, b/23 4

where R= J a’ + (z- zty2 . Thisiscaled an integral eguation because the unknown
guantity | (z¢) appearsin the integrand.

4. Solve the integral equation using the method of moments (MM). First approximate the
current by a series with unknown expansion coefficients{I » }

N
1(z§ = Q InF n(z9

n=1

The basis functions or expansion functions {F »} are known and selected to suit the
particular problem. We would like to use as few basis functions as possible for
computational efficiency, yet enough must be used to insure convergence.

35
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Calculation of Antenna lmpedance (3)

Example: a step approximation to the current using a series of pulses. Each segment is
called asubdomain. Problem: there will be discontinuities between steps.

1 (z®)
CURRENT A STEP
APPROXIMATION
I2F2 =71 [ T3
/’, \\\
11F 1,/ - ... SUNFN
2’ 2
// ) \\ >Zq

Ly 7 0
2

ZNE

2
A Dbetter basis function is the overlapping piecewise sinusoid

1(z9
CURRENT 4 PIECEWISE
/ SINUSOID
| -
< SINFN
y 20
N L
2

36
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Cdlculation of Antenna lmpedance (4)

A piecewise sinusoid extends over two segments (each of length D) and has a maximum at
the point between the two segment

A 3 -
12021 e £ 208 24
F n(z9 | 2f- 21
:|I Z'q:-l_ R
Fn(z§={ "= 26 £ 20£ 28
S - 2
» 20 .
z;-D  z, zy+D 10, elsewhere
(=24.1) (= Zy41) t
A F n(Zq)
Entire domain functions are also Fq
possible. Each entire domain 2.
basis function extends over the et N z(
entirewire. Examples are . / >
. . ’N F 2./ —
sinusoids. T~ = 2

37
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Calculation of Antenna lmpedance (5)

Solving the integral equation: (1) insert the series back into the integral equation

012 N 5 - kR
&, 07 &g Og 10, b/2E|AE0/2
K2+ InF n(z+

&+ q2p 0.9Q I 00T dze=| e, br20 4

Note that the derivative is with respect to z (not zd) and therefore the differential operates
onIy on R. For convenience we define new functions f and g:

5/2 o) jkKR(z,z0  §] 3
l §k2+—j n(Z(De dzﬁz%O,_ . E;;f\z\EMZ
n=1 1 (/2 PR(zz9 p 17 Wy E:
° f(F n)® fn(2) J °g

Once F n isdefined, the integral can be evaluated numerically. The result will still bea
function of z hence the notation f,(z).

(2) Choose a set of N testing (or weighting) functions{Cm}. Multiply both sides of the
eguation by each testing function and integrate over the domain of each function Dm to
obtain N equations of the form

OCm(2 éN I fa(2)dz= Fm(29(2)dz, m=12..,N
n=1

m m
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Calculation of Antenna lmpedance (6)

| nterchange the summation and integration operations and define new impedance and
voltage quantities

y o V
A 'ni (Fm@fm(Ddzy= Fm(Do(2)dz

=1 fop, b Dm

Zon Vin

This can be cast into the form of a matrix equation and solved using standard matrix
methods

/

N
@]
a nZm=Vm ® [Z][1]=[V] ® [I1]=[z]*V]
n=1
|Z] is a square impedance matrix that depends only on the geometry and material
characteristics of the dipole. Physically, it isameasure of the interaction between the
currents on segments mand n. [V] isthe excitation vector. It depends on the field in the

gap and the chosen basis functions. [1] isthe unknown current coefficient vector.
After [I] has been determined, the resulting current series can be inserted in the radiation
integral, and the far fields computed by integration of the current.
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Salf-lmpedance of aWire Antenna

The method of moments current allows calculation of the self impedance of the antenna by
taking theratio Zgs =Vy/ 1o

RESISTANCE REACTANCE

! 5
F i 400
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=1000L-
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The Fourier Series Analog to MM

The method of momentsis a general solution method that iswidely used in all of
engineering. A Fourier series approximation to a periodic time function has the same
solution process as the MM solution for current. Let f(t) be the time waveform

¥

f() =22+ 2 & [a, cosfwit) + by sin(wyt)]
T T n=1

For simplicity, assume that there is no DC component and that only cosines are necessary

to represent f (t) (trueif the waveform has the right symmetry characteristics)

4

f(t) = 23 a,, cos(wpt)
Th=za

The constants are obtained by multiplying each side by the testing function cos(wmt) and

integrating over a period

s 2 T2 el 5 10, mtn
of () coslwt)dt == & && a, costwit)2coslwt) dt =
“T/2 T . 7/2€n=1 g 1@, m=n

Thisisanalogousto MM when f(t) ® 1(z9, a, ® I, F,® cos(w,t), and

Cy ® cos(wyt). (Since f(t) isnotinan integral equation, a second variable tdis not
required.) The selection of the testing functions to be the complex conjugates of the
expansion functionsisreferred to as Galerkin’s method.
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Reciprocity (1)

When two antennas are in close proximity to each other, there is a strong interaction
between them. The radiation from one affects the current distribution of the other, which
in turn modifies the current distribution of the first one.

ANTENNA 1 ANTENNA 2
(SOURCE) (RECEIVER)
\ h I, / |
N B /
Y/ E Vo1
QO > Cet
Z / \ Zp
t .

Consider two situations (depicted on the following page) where the geometrical
relationship between two antennas does not change.

1. A voltage is applied to antenna 1 and the current induced at the terminals of antenna 2 is
measured.

2. The situation is reversed: avoltage is applied to antenna 2 and the current induced at the
terminals of antenna 1 is measured.
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Case 1:

ANTENNA 1

Case 2:

ANTENNA 1

L

|1

I

CURRENT
METER

I

CURRENT
- U
ENERGY FLOW
ANTENNA 2

+
Vo

ENERGY FLOW \

ANTENNA 2
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Mutual Impedance (1)

Define the mutual impedance or transfer impedance as

V. V,
Z1p :|_2 and 221:|_1
1 2

Thefirst index on Z refers to the receiving antenna (observer) and the second index to the
source antenna.

Reciprocity Theorem: If the antennas and medium are linear, passive and isotropic, then
the response of a system to a source is unchanged if the source and observer (measurer)
are interchanged.
With regard to mutual impedance:

- This |mpll&sthat 221 = Z]_2

- The receiving and transmitting patterns of an antenna are the sameif itis

constructed of linear, passive, and isotropic materials and devices,
In genera, the input impedance of antenna number n in the presence of other antennasis
obtained by integrating the total field in the gap (gap width by,)
Zy=n =L o di
In In bn
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Mutual Impedance (2)
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E, isthetotal field in the gap of antennan (dueto its own voltage plus the incident fields

from all other antennas).

A
ﬂ\/
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Mutual I mpedance (3)

If there are atotal of N antennas

Therefore,
1 N
Zn :l— Oé, Enm d£n
n Q‘I m=1
Define
Vam = fEnm déy,
bn
The impedance becomes
1 N N Vo _ N
Z,=—aVyn=a —=a <y
In m=1 m=1 In m=1
— ——
OVI‘] ° an

For example, the impedance of dipole n=1 iswritten explicitly as
L=yt Zyp -t 4N

When m = n the impedance is the salf impedance. Thisis approximately the impedance
that we have already computed for an isolated dipole using the method of moments.
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Mutual |mpedance (4)

The method of moments can also be used to compute the mutual coupling between
antennas. The mutual impedance is obtained from the definition

Vin

Zon =—
In

mutual impedance at port mdueto a
current in port n, with port m open ciruited

|m=0

By reciprocity thisisthe same as Zmn = Znm = —

m |n:0
distant (n) and one near (m). To determine Zmn a voltage can be applied to the distant
dipole and the open-circuited current computed on the near dipole using the method of
moments. The ratio of the distant dipol€’ s voltage to the current induced on the near one
gives the mutual impedance between the two dipoles.

. Say that we have two dipoles, one

Plots of mutual impedance are shown on the following pages.

1. high mutual impedance implies strong coupling between the antennas

2. mutual impedance decreases with increasing separation between antennas

3. mutual impedance for wire antennas placed end to end is not as strong as when
they are placed parallel
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Mutual Impedance of Parallel Dipoles

80
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Mutual Impedance of Colinear Dipoles

R or X (ohms)
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Mutual -1 mpedance Example

Example: Assume that a half wave dipole has been tuned so that it is resonant (Xa = 0).

We found that a resonant half wave dipole fed by a 50 ohm transmission line hasaVSWR
of 1.46 (areflection coefficient of 0.1870). If asecond half wave dipoleis placed parallel
to the first one and 0.65 wavelength away, what is the input impedance of the first dipole?

From the plots, the mutual impedance between two dipoles spaced 0.65 wavelength is
Z21 = Ro1+ [ Xo1 =-24.98- j7.7TW
Noting that Z,; = Z;, thetotal input impedanceis
In=4n+in
=73+ (-24.98- |7.7)
=48.02- j7.7T W
The reflection coefficient is
_ Z|n - Zo _ (4802' 177)' 50
 Zin+Zo (48.02- j7.7)+50

which correspondsto aVSWR of 1.176. Inthis case the presence of the second dipole has
improved the match at the input terminals of the first antenna.

- j99.93°

=-0.0139- j0.0797=0.081e
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Broadband Antennas (1)

The required frequency bandwidth increases with the rate of information transfer (i.e., high
data rates require wide frequency bandwidths). Designing an efficient wideband antenna
isdifficult. The most efficient antennas are designed to operate at a resonant frequency,
which isinherently narrow band.

Two approaches to operating over wide frequency bands:
1. Split the entire band into sub-bands and use a separate resonant antenna in each band

Advantage: Theindividual antennas are easy to design (potentially inexpensive)
Disadvantage: Many antennas are required (may take alot of space, weight, etc.)

TOTAL SYSTEM BANDWIDTH OF AN
1y BANDWIDTH INDIVIDUAL ANTENNA

' A
MDfZ e *
. ~ It ;

BROADBAND
INPUT SIGNAL
—>

FREQUENCY
MULTIPLEXER

N ? 5
ijN Df1 Dfo Dfn
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Broadband Antennas (2)

2. Use asingle antenna that operates over the entire frequency band

Advantage: Less aperture arearequired by a single antenna
Disadvantage: A wideband antennais more difficult to design than a narrowband antenna

Broadbanding of antennas can be accomplished by:

1. interlacing narrowband elements having non-overlapping sub-bands (stepped band
approach)

Example: multi-feed point dipole

TANK CIRCUIT USING
— S0 m&.u-)f/ LUMPED ELEMENTS
— | —
dm’r
< > OPEN CIRCUIT AT
B HIGH FREQUENCIES
OJmax
< > SHORT CIRCUIT AT

11 LOW FREQUENCIES
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Broadband Antennas (3)
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2. design elements that have smooth geometrical transitions and avoid abrupt
discontinuities
Example: biconical antenna

dmin
| ) — <)
dmax
_ < >
spiral antenna
A
dmax
FEED POINT
WIRES
v
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Circular Spiral in Low Observable Fixture
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Broadband Antennas (4)

Another example of a broadband antennais the log-periodic array. It can be classified asa
single element with a gradual geometric transitions or as discrete elements that are
resonant in sub-bands. All of the elements of the log periodic antenna are fed.

A
A
DIRECTION  dpir .
OF MAXIMUM ¢ - = = = &
RADIATION
v
v

The range of frequencies over which ana antenna operates is determined approximately by
the maximum and minimum antenna dimensions

| |
dmin » 7H and dmax » ?L
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A Yagi-Uda (or smply Yagi) isused at high frequencies (HF) to obtain a directional

azimuth pattern. They are frequently employed as TV/FM antennas. A Y agi consists of a
fed element and at least two parasitic (non-excited) elements. The shorter elementsin the
front are directors. The longer element in the back isareflector. The conventional design
has only one reflector, but may have up to 10 directors.

POLAR PLOT OF
RADIATION PATTERN

- | | | >
REFLECTOR
DIRECTORS
BACK LOBE MAIN LOBE
FED MAXIMUM MAXIMUM
ELEMENT DIRECTIVITY DIRECTIVITY

The front-to-back ratio isthe ratio of the maximum directivity in the forward direction to
that in the back direction: Dyax / Dpack
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Ground Planes and Images (1)

In some cases the method of images allows construction of an equivalent problem that is
easier to solve than the original problem.

When a source islocated over a PEC ground plane, the ground plane can be removed and
the effects of the ground plane on the fields outside of the medium accounted for by an
image located below the surface.

ORIGINAL PROBLEM EQUIVALENT PROBLEM
A A
ORIGINAL
—> | —> A |
® ® SOURCES ® ®
I h | dl | dl ldl p | di
REGION 1
GRQUNR PLANF_ _ __ _ ) J
PEC REMOVED
REGION 2 h T
IMAGE \ .
______<_ ___________
RCES ® ®
SOURE Id Id

The equivalent problem holds only for computing thefieldsin region 1. It isexact for an
infinite PEC ground plane, but is often used for finite, imperfectly conducting ground

planes (such as the Earth’ s surface).
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Ground Planes and Images (2)

The equivalent problem satisfies Maxwell’ s equations and the same boundary conditions
asthe original problem. The uniqueness theorem of electromagnetics assures us that the

solution to the equivalent problem is the same as that for the original problem.

Boundary conditions at the surface of a PEC: the tangential component of the electric field

IS zero.
ORIGINAL PROBLEM

€ SNE R

EQUIVALENT PROBLEM
®
ldz TANGENTIAL

COMPONENTS
CANCEL

Y. > -

=P

.

A
| dz

A similar result can be shown if the current element is oriented horizontal to the ground
plane and the image is reversed from the source. (A reversal of the image current direction
implies anegative sign in the image’ sfield relative to the source field.)
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Ground Planes and Images (3)

Half of a symmetric conducting structure can be removed if an infinite PEC is placed on
the symmetry plane. Thisisthe basis of a quarter-wave monopole antenna.

BNRE . |TI|/4
Vg+(> 2b  z=0 VQQ_ b

- PEC

ORIGINAL MONOPOLE
DIPOLE

- Theradiation pattern is the same for the monopole asit is for the half wave dipole
abovetheplanez=0

- Thefield in the monopole gap istwice the field in the gap of the dipole
- Since the voltage is the same but the gap is half of the dipole' s gap

_1 7312
Ra‘monop(ﬂe - E Ra‘dipde - 7 = 36.56 ohms
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Crossed dipoles (also known asa
turnstile) consists of two orthogonal R v
dipoles excited 90 degrees out of phase. ly | e

|x:|0. /lx

. Z
Iyzloe“O/ZZJ'o / >
The radiation integral givestwo terms
5
kh g£ 012
Eq —J—e Jkrg o locoqy cosf e X¥SNacost g i o | cog sinf ejykansnfdytb—
C-t12 T -2 T ;
é q- X q- 9y 2
vz
If k¢ <<1then px%nacst g6 ¢ and similarly for they integral. Therefore,
Y. | |
- jkhl ce Ik g 1K
Eq UL cosq (cosf +jsinf) = = cosq (cosf +jsnf)
4ap r
OEO
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Crossed Dipoles (2)

A similar result is obtained for E
_jkhlgre I g

o (sinf - jeosf ) = - B, ;

°- B
Consider the components of the wave propagating toward an observer on the z axis

q:f ZO:Eq:EO’Ef :jE0,0r

E (snf - jcod )

which isacircularly polarized wave. If the observer is not on the z axis, the projected
lengths of the two dipoles are not equal, and therefore the wave is dliptically polarized.
The axid ratio (AR) isameasure of the wave' s dlipticity at the specified q,f :

E
AR :m, 1EARE¥

‘in

AR:‘Ef‘: 1 = 1
(=N \/coszq(coszf +sin2f) |cosq

For the crossed dipoles
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The rotating linear pattern is shown. A linear receive antennarotates like a propeller blade
as it measuresthe far field at ranger. The envelope of the oscillations at any particular
angle gives the axial ratio at that angle. For example, at 50 degrees the AR is about

1/0.64 =1.56=1.93 dB
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Crossed Dipoles (4)

Examples of rotating linear patterns on crossed dipoles that are not equal in length

270 270

VOLTAGE PLOT DECIBEL PLOT
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Polarization Loss (1)

For linear antennas an effective height (he) can be defined

Voc = Einc . Fle Voc — N'nc

The open circuit voltage is a maximum when the antenna is aligned with the incident
electric field vector. The effective height of an arbitrary antenna can be determined by
casting its far field in the following form of three factors

E(r,q.f) = [Eo]ﬁu[he(q £)]
€

The effective height accounts for the incident € ectrl c field projected onto the antenna
element. The polarization loss factor (PLF) between the antenna and incident field is

[Bine - R
Bl el

PLF,p
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Polarization Loss (2)

Example: The Hertzian dipole’ sfar field is

B L < Ba Ik ~
E(r,q,f) = 0o 58 gl sinad]
€& 4p He Y
he(@.f )
If we have a second dipole that isrotated by an angle d in a plane parallel to the plane

containing the first dipole, we can calculate the PLF asfollows. Firgt,

—

Voc = Bine - F‘e :‘Einc‘z' ﬁezq::‘éincuﬁez' 2¢:‘Einc“He‘COSd

T‘ . /‘Z(I

!
/ -~ /‘ Voo

TRANSMIT RECEIVE
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Polarization Loss (3)

ThePLFis

When the dipoles are parallel, p=1, and there is no loss due to polarization mismatch.
However, when the dipoles are at right angles, p=0 and there is a complete loss of signal.

A more general case occurs when the incident field hasboth g and f components

Einc =B, a+E f
) ‘(EiqqA + Ej, fA)- ﬁe‘z
Eigd + & 1R
Example: The effective height of a RHCP antennawhich radiatesin the +z direction is

given by the vector h, = ho(q - jf ) A LHCP field isincident on this antenna (i.e., the
incident wave propagates in the —z direction):

|nc_E( - Jf)ejkz
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Polarization Loss (4)

ThePLFis
Enld- i) G- ifleref
V2E [ [N

If aRHCP wave is incident on the same antenna, again propagating along the zaxisin the
negative direction, E;. = E, (d + ij)e‘kZ. Now the PLF is

el if)- G+ i)
2E [ 2|
Finally, if alinearly polarized plane wave is incident on the antenna, E;, :cone“Q
Bl - i) et
[Pz

If alinearly polarized antennais used to receive a circularly polarized wave (or the reverse
situation), thereisa3 dB lossin signal.

p= =0

=1/2
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Antenna Polarization L oss

TRANSMIT RECEIVE
ANTENNA ANTENNA

Summary of polarization
|osses for polarization
mismatched antennas
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Alrcraft Blade Antenna

Blade antennas are used for telemetry and communications. They have nearly
hemispherical coverage, allowing the aircraft to maneuver without a complete |oss of
signal. The resulting polarization is often called dant because it contains both horizontal

and vertical components.
Comparison of measured and cal cul ated

Blade antenna patterns for ablade installed on a cylinder

| /4 THIN WIR
1.58¢
*h _ (401cm)
® |
-+

3.06(7.62cm) >{

M ethod of moments mode!:

Location of source
excdtaion
/

AT
—
T e

=

—. measured
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Blade Antennas Installed on an Aircraft

The top antenna (A) provides coverage in the upper hemisphere, while the bottom antenna

(B) coversthe lower hemisphere. The two antennas can be duplexed (switched) or their
signals combined using a coupler.

Method of moments patch model: Elevation pattern: (signals
combined with 3 dB coupler)

Pt ch

Gain=5.09 dB
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Small Loop Antenna (1)

By symmetry, we expect that the field of a small wire loop located in the z= 0 plane will
depend only on the angle off of the wire axis, q . Because of the azimuthal symmetry
cylindrical coordinates are required to solve this problem. If thewireisvery thin (a

filament) and has a constant current IOfA¢rowi ng init, the radiation integral is

o . 2p A
E(rig,f)» AN e 'y ikrerf @ ¢
Apr 0 dre

Using the transformation tables

= Xgng cosf + ysngsanf + zcosq
¢=ar ¢=a(X cosf ¢+ ysnf ¢

. r¢=asinqg(cosf cosf ¢+snf sinf ¢

) ﬁl )

We aso need f ¢in terms of the cartesian

unit vectors (fA¢is not a constant that can be
moved outside of the integral)

f ¢=- gsnf ¢+ Jcosf ¢
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Small Loop Antenna (2)

The radiation integral becomes

- JZ::: od o jkr C)(_ ggnf ¢+ § cosf gejkas'nq(cosf cosf G+dnf dnf G)df ¢
0
For asmall loop ka << 1 and the exponential can be represented by the first two terms of a

Taylor's seriesto get e/kasna(cosf snf rsnfcost )9 4 ikagng(cosf cosf ¢+sinf sinf §
|nserting the approximation in the integral
2p
O(- ksinf ¢+ ycosf Y1+ jkasing (cosf cosf ¢+sinf sinf Q|df ¢
2p ’ 2p
Since gsinf df ¢= @cosf @f ¢=0 the 1 in the square brackets can be dropped. The
0 0

2p

E(r,q,f ) »

remaining terms in the integrand involve the following factors:
sinf sin°f ¢
anf @osf cosf ¢ ® integratesto zero because sinf @cosf tisan odd functionof f ¢
cosf cos’f ¢
anf &Ginf cosf ¢ ® integratestozero because sanf dcosf ¢isan odd function of f ¢
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Small Loop Antenna (3)

The only two terms that do not integrate to zero are of the form
2p 2p

Osin?f tf ¢= §cos?f Gf ¢=p
0

Therefore,
E(r,g.,f)» Jkahlo(JkaanI)e- Jkré gsinf Osmzf 0df ¢+ §cosf Ocoszf Golf ¢:
4pr 2
21 A2 | i 2 |
K hioa snge ¥ (- gsnf + ycosf )=f k2h4|0a snge ¥
r - r

=f
The radiation pattern of the small loop is the same as that of a short dipole aligned with the
loop axis. Theradiated power is

k*hl gp a’
12

Prad =
and the radiation resistance

_2Ra _Khpa® _(@p/1)*a2p)pat _ o azm’
6 6 & o
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Helix Antenna (1)

A helix is described by the following parameters:

D = diameter

A = axia length

C = circumference (pD)

S = center-to-center spacing
between turns

L = length of one turn

N = number of turns

a= tan'l(S/pD) =pitch angle

=" $—— GROUND PLANE

Conventional helices are constructed with air or low-dielectric cores. A helix is capable of
operating in several different radiation modes and polarizations, depending on the
combination of parameter values and the frequency.
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Helix Antenna (2)

Radiation modes of a hdlix:

NORMAL MODE AXIAL MODE

A

=

SMALL (LOOKS
LIKE A LOOP)

LARGE
C>|

In both cases the radiation is circularly
polarized:

Normal mode; AR = 29 >
D%
2n+1

Axiadl mode: AR =
2N

In the axial mode, the beamwidth decreases
with increasing helix length, NS

115°
(C/1)-/NSTI

BWFN =

for 12° <a <13°.
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